Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1999 Printed in Austria

Hydroacridines XIX [1]. ¹³C NMR Spectra of Several *N*-Alkyl-tetradecahydroacridines and their Protonated Species: Investigation of the *N*-Epimeric Equilibria of the *N*-Alkyl Groups in the Amines and in the Salts

Francisc Potmischil^{1,*}, Helmut Herzog², and Joachim Buddrus²

¹ Department of Organic Chemistry, University of Bucharest, RO-70031 Bucharest-1, Romania

² Institut für Spektrochemie und Angewandte Spektroskopie, D-44139 Dortmund, Germany

Summary. $(4a\alpha,8a\beta,9a\beta,10a\alpha)$ -Tetradecahydro-10-methylacridin, $(4a\alpha,8a\beta,9a\beta,10a\alpha)$ -10-ethyltetradecahydroacridin, $(4a\alpha,8a\alpha,9a\beta,10a\alpha)$ -tetradecahydro-10-methylacridine, $(4a\alpha,8a\alpha,9a\beta,10a\alpha)$ -10-ethyl-tetradecahydroacridin and their products of protonation with trifluoroacetic acid were studied by ¹³C NMR spectroscopy. The first two amines give rise to a pair of *N*-diastereomeric salts, whereas the latter two yield only the salts with equatorial *N*-alkyl groups. The *N*-epimeric equilibria of the *N*-alkyl groups (equatorial-axial) in the salts and in the amines are discussed.

Keywords. Acridines, tetradecahydro; N-Epimeric equilibria; ¹³C NMR.

Hydroacridine, 19. Mitt. [1]. ¹³C-NMR-Spektren einiger *N*-Alkyl-tetradecahydroacridine und deren protonierter Species: Untersuchung der *N*-epimeren Gleichgewichte der *N*-Alkylgruppen in den Aminen und in den Salzen

Zusammenfassung. $(4a\alpha,8a\beta,9a\beta,10a\alpha)$ -Tetradecahydro-10-methylacridin, $(4a\alpha,8a\beta,9a\beta,10a\alpha)$ -10-Ethyl-tetradecahydroacridin, $(4a\alpha,8a\alpha,9a\beta,10a\alpha)$ -Tetradecahydro-10-methylacridin, $(4a\alpha,8a\alpha,9a\beta,10a\alpha)$ -10-Ethyl-tetradecahydroacridin und deren Protonierungsprodukte mit Trifluoressigsäure wurden ¹³C-NMR-spektroskopisch untersucht. Die beiden erstgenannten Amine ergeben jeweils ein Paar *N*-diastereomerer Salze, während aus den beiden letzteren nur die Salze mit äquatorialen *N*-Alkylgruppen entstehen. Die *N*-epimeren Gleichgewichte der *N*-Alkylgruppen (äquatorial-axial) in den Salzen und in den Aminen werden diskutiert.

Introduction

The equilibria of *N*-epimeric pairs of various N,C-polymethylpiperidinium [2–5] and *N*-methyl-*trans*-decahydroquinolinium salts [6] have been the object of considerable attention. Since a comparison with tetradecahydroacridinium salts

^{*} Corresponding author

should be of interest, we have examined the salts formed by 'protonation' of $(4a\alpha,8a\beta,9a\beta,10a\alpha)$ -tetradecahydro-10-methylacridine (1), $(4a\alpha,8a\beta,9a\beta,10a\alpha)$ -10-ethyl-tetradecahydroacridine (3), $(4a\alpha,8a\alpha,9a\beta,10a\alpha)$ -tetradecahydro-10-methylacridine (5), and $(4a\alpha,8a\alpha,9a\beta,10a\alpha)$ -10-ethyl-tetradecahydroacridine (7) with deuterated trifluoroacetic acid from this point of view.

As trifluoroacetic acid-*d* was used for salt formation, actually '*deuteronation*' should be the correct term to be used. For convenience, however, we will use the term '*protonation*' within this paper. The isotope effect exerted by substitution of hydrogen by deuterium on the ¹³C NMR chemical shifts of the carbon atoms in positions α and β with respect to the nitrogen in the salts (*i.e.*, in β and γ positions, respectively, to the deuterium) results mostly in an upfield shift of less than 0.2 ppm [7]. The isotope effect on more remote carbons is expected to be within or below the limits of experimental error.

 $1_{eq}, 1_{ax}, 2_{eq}, 2_{ax}: R = Me; 3_{eq}, 3_{ax}, 4_{eq}, 4_{ax}: R = Et$

Scheme 1

5, 6: R = Me; 7, 8: R = Et

538

Upon protonation, amines 1 and 3 each give rise to a pair of *N*-diastereomeric triflates (2_{eq} , 2_{ax} and 4_{eq} , 4_{ax} , respectively, Scheme 1), whereas amines 5 and 7 yield only the salts with equatorial N^+ -alkyl groups (6 and 8; Scheme 2). The quantitative parameters of the equilibria of the N^+ -alkyl groups within the pairs 2_{eq} , 2_{ax} and 4_{eq} , 4_{ax} were determined through quantitative ¹³C and ¹H NMR, respectively. In addition, we suggest a possible new way to estimate the free energy differences (ΔG°) of the *N*-alkyl groups in free amines, considering those of their salts and the solvation power of the solvent used.

Results and Discussion

¹³C NMR signal and stereostructural assignments

The steric orientations of the N^+ -alkyl groups in the triflates 2_{eq} , 2_{ax} , 4_{eq} , 4_{ax} , 6 and 8 were established by comparison of their ¹³C NMR spectra with those of the parent amines 1, 3, 5, and 7, respectively. Except for 4_{ax} , for all compounds full signal assignments of the ring carbons could be secured by the 2D INADEQUATE technique. For the exocyclic N⁺-CH₃ and N⁺-CH₂CH₃ groups in the salts 2_{eq} , 2_{ax} , 4_{eq} , 4_{ax} , 6 and 8, the stereochemical assignments were performed based on the presence or absence of the clearly observable mutual γ -gauche effects with the bridgehead carbons C-8a and C-9a (for details, see discussion of specific compounds). For amine 1 and earlier signal assignment already exists [8] containing am ambiguity which is now eliminated. The ¹³C NMR chemical shifts and signal assignments of compounds 1–8 are presented in Table 1.

The trifluoroacetate of amine 1 exhibits two sets of sharp resonances: eight signals of higher intensity and another eight of lower intensity, obviously a two-species spectrum arising from the equilibrating pair of *N*-epimeric salts $2_{eq}/2_{ax}$. Owing to the small number of signals of 2_{eq} and 2_{ax} and to a sufficient portion of the minor epimer (see next section), for both 2_{eq} and 2_{ax} the complete signal assignments could be achieved by a 2D INADEQUATE experiment on the mixture. In the spectrum with higher intensity (*i.e.* that of the major epimer), the signal positions show only the shifts induced by *N*-protonation [9] and indicate no change in geometry with respect to the parent amine 1^a . On the other hand, in the spectrum of the minor epimer very large upfield shifts are observed for the bridgehead-carbons C-8a/9a (-8.43 ppm) and the N⁺-CH₃ carbon (-8.97 ppm) that may not be due solely to protonation and can be rationalized only by the γ -gauche interactions of these carbons with the axial N⁺-methyl group in 2_{ax} . Therefore, the major epimer has to be assigned structure 2_{eq} with an equatorially oriented N⁺-methyl group.

The trifluoroacetate of amine 3 also gives a two-species spectrum arising from the equilibrating *N*-epimeric salts 4_{eq} and 4_{ax} . By the same reason as shown for the

^a According to investigations on *C*, *N*-dimethyldecahydroquinolines (Ref. [8]) sterically related to our amines, for **1** the amount of conformer $\mathbf{1}_{eq}$ should be at least 95% and for **5** that of equatorial N-CH₃ even 100%. Hence, the contribution of conformation $\mathbf{1}_{ax}$ may be neglected, and the averaged spectrum of **1** may be considered practically identical with that of $\mathbf{1}_{eq}$. The spectra of **3**, **5**, and **7** correspond to those of their equatorial *N*-alkyl epimers.

	Compound									
	$\overline{1=1_{eq}^{b}}$	2_{eq}	2 _{ax}	$3 = 3_{eq}$	4_{eq}	4 _{ax}	5	6	7	8
C-1	33.46	32.41	32.46	33.26	32.31	32.01	33.71	32.29	33.66	32.33
		-1.05	-1.00		-0.95	-1.25		-1.42		-1.33
C-2	25.83	24.12	24.47	25.71	24.00	(24.29)	25.71	23.55	25.76	23.57
		-1.71	-1.36		-1.71	-1.42		-2.16		-2.19
C-3	26.10	24.95	24.71	25.98	24.81	(24.35)	26.07	24.63	26.09	24.51
		-1.15	-1.39		-1.17	-1.63		-1.44		-1.58
C-4	31.03	27.68	27.78	30.47	27.27	27.18	30.52	26.18	30.03	25.82
		-3.35	-3.25		-3.20	-3.29		-4.34		-4.21
C-4a	69.28	70.68	67.80	63.98	65.96	68.97	70.21	71.01	64.38	65.73
		1.40	-1.48		1.98	4.99		0.80		1.35
C-5	31.03	27.68	27.78	30.47	27.27	27.18	30.74	27.22	30.18	26.77
		-3.35	-3.25		-3.20	-3.29		-3.52		-3.41
C-6	26.10	24.95	24.71	25.98	24.81	(24.35)	19.74	17.72	20.40	18.04
		-1.15	-1.39		-1.17	-1.63		-2.02		-2.36
C-7	25.83	24.12	24.47	25.71	24.00	(24.29)	26.86	24.68	26.77	24.61
		-1.71	-1.36		-1.71	-1.42		-2.18		-2.16
C-8	33.46	32.41	32.46	33.26	32.31	32.01	27.37	24.98	27.02	24.86
		-1.05	-1.00		-0.95	-1.25		-2.39		-2.16
C-8a	40.99	39.00	32.56	41.37	38.90	33.04	37.55	34.89	37.47	34.69
		-1.99	-8.43		-2.47	-8.33		-2.66		-2.78
C-9	40.69	37.71	38.29	40.67	37.71	38.05	39.35	36.20	39.49	36.21
		-2.98	-2.40		-2.93	-2.59		-3.15		-3.18
C-9a	40.99	39.00	32.56	41.37	38.90	33.04	36.95	33.87	37.09	33.80
		-1.99	-8.43		-2.47	-8.33		-3.08		-3.29
C-10a	69.28	70.68	67.80	63.98	65.96	68.97	63.67	65.37	57.22	59.81
		1.40	-1.48		1.98	4.99		1.70		2.59
N-CH ₃ eq	36.07	35.00	_	_	_	_	36.54	35.12	_	_
5 1		-1.07						-1.42		
N-CH ₃ ax	-	-	27.10	-	-	-	—	-	-	-
NCIL			-8.97	28.05	40.22				28 11	20.68
N-CH ₂ eq	_	-	-	36.95	1.37	—	-	—	30.44	1.24
N-CH ₂ ax	_	_	_	_	_	39.66	_	_	_	_
2						0.71				
C-CH ₃	_	_	_	7.22	5.53	13.82	_	_	5.40	4.42
5					-1.69	6.60				-0.98

Table 1. ¹³C NMR chemical shifts and shift differences of amines 1, 3, 5, 7 and their deuterotrifluoroacetates $2_{eq}-2_{ax}$, $4_{eq}-4_{ax}$, 6, and 8 (± 0.1 ppm)^a

^a In parts per million downfiled from internal *TMS* in $CDCl_3$; the values in parentheses are ambiguous and may be interchanged; the figures in the second lines represent the shift differences between the protonated forms and their parent amines; ^bchemical shifts taken from Ref. [8]

pair $2_{eq}/2_{ax}$ (vide supra), structure 4_{eq} was ascribed to the major epimer and structure 4_{ax} to the minor one. In this case, however, because of too low content of 4_{ax} in the equilibrium mixture, signal assignments were possible only for 4_{eq} through the 2D INADEQUATE spectrum. Nevertheless, an almost complete signal

The triflates of both 5 and 7 exhibit only one set of signals, whose chemical shifts point to structures with equatorial N^+ -alkyl groups (6 and 8).

The equilibria of the N-epimeric pairs of triflates $2_{eq}-2_{ax}$ and $4_{eq}-4_{ax}$

The main quantitative parameters of the *N*-epimeric equilibria of the triflates $2_{eq}-2_{ax}$ and $4_{eq}-4_{ax}$, respectively, are presented in Table 2. The ratio $2_{eq}:2_{ax}$ was determined by quantitative ¹³C NMR spectroscopy by averaging the integration data for five well separated pairs of signals of correspondent carbons (C-2/7, C-3/6, C-9, C-4a/10a, and N⁺-CH₃); the five individual values emerging from these pairs of signals were consistent within $\pm 2\%$. The ratio $4_{eq}:4_{ax}$ was determined by integration of the H-4a/10a and N⁺-CH₂ proton signals well separated in the ¹H NMR spectrum of the mixture (see Experimental); the accuracy was also $\pm 2\%$.

The largely increased equilibrium proportion of the epimers with axial *N*-alkyl groups in salts (2_{ax} and 4_{ax} , respectively) as compared to the free parent amines (expected: 1_{ax} : $\leq 5\%$, 3_{ax} : $\leq 2\%$; see discussion below and footnote^a) is a general feature whose main explanation is the easier solvation of the equatorial N⁺-H bonds owing to which the salts with axial N⁺-alkyl groups are more stabilized by solvation than are their epimers with equatorial N⁺-alkyl groups [3, 5]. Hence, the higher the solvation ability of the solvent, the more reduced the free-energy difference between the equilibrating *N*-epimers. For *N*-diastereomeric 1-*cis*-2,6-trimethylpiperidinium salts, where the steric relations of the *N*-methyl group are rather similar to those in $2_{eq}/2_{ax}$, $-\Delta G^{\circ}$ values ranging from 0.46 to 2.09 kJ · mol⁻¹ have been reported (see Table 3) in dependence on the solvation power of the solvents (and on experimental errors, perhaps). The value of $1.31 \text{ kJ} \cdot \text{mol}^{-1}$ found by us for the free energy difference between 2_{eq} and 2_{ax} compares very well to the mean of the extreme values given above.

It seems reasonable to expect the $-\Delta G^{\circ}$ value for the free amine *N*-epimers $\mathbf{1}_{eq}-\mathbf{1}_{ax}$ also to be comparable to that of free 1-*cis*-2,6-trimethylpiperidine, for which $7.7\pm0.1 \text{ kJ}\cdot\text{mol}^{-1}$ (cyclohexane, 288 K) has been reported [10]^b. If this is

deuterotrifluoroacetates $2_{eq}-2_{ax}$ and $4_{eq}-4_{ax}$ in CDCl₃ *N*-Epimers K_{296} $-\Delta G^{\circ}_{296}$ (kJ·mol⁻¹)

Table 2. Equilibrium constants (K) and free energy differences (ΔG°) of the N-epimeric pairs of

(equilibrium ratio $\pm 2\%$)	270	- 200 ()
2_{eq} (63%): 2_{ax} (37%)	1.71±0.15	1.31±0.21
4_{eq} (86%): 4_{ax} (14%)	6.29 ± 1.04	4.49 ± 0.41

^b This is the only firm value we could find in the literature for this compound (in Ref. [5], $-\Delta G^{\circ} > 5.44 \text{ kJ} \cdot \text{mol}^{-1}$ with no upper limit is given); for the *N*-methyl-*trans*-decahydroquinoline conformers, a $-\Delta G^{\circ}$ value of 7.53 to 10.25 kJ \cdot mol⁻¹ in CDCl₃ has been estimated (Ref. [6]).

Salt/Solvent	$-\Delta G^{\circ} \\ (\text{kJ} \cdot \text{mol}^{-1})$	T (K)	Method of determination	Ref.
Perdeuteroacetate/CD ₃ COOD	0.46	306	¹ H NMR	[3]
Perdeuteroacetate/CD ₃ COOD	0.71	311	¹ H NMR	[2]
Formate/HCOOH	1.46	306	¹ H NMR	[3]
Hydrochloride/H ₂ O	1.50	296	¹ H NMR	[4]
Hydrochloride/D ₂ O	1.84	308	¹³ C NMR	[5]
Hydrochloride/H ₂ O	2.09	306	¹ H NMR	[3]
Trifluoroacetate/CF ₃ COOH	1.92	311	¹ H NMR	[2]

Table 3. ΔG° values of 1-cis-2,6-trimethylpiperidinium salts as determined in various solvents^a

^a Values reported earlier in kcal \cdot mol⁻¹ were converted to kJ \cdot mol⁻¹ using 1 cal = 4.184 J

true, the effect of preferential solvation of 2_{ax} by CDCl₃ in reducing the free energy difference of $2_{eq}/2_{ax}$ relative to $1_{eq}/1_{ax}$ can be estimated to approximately 7.70 kJ · mol⁻¹-1.31 kJ · mol⁻¹ \cong 6.4 kJ · mol⁻¹, and an equilibrium ratio of *ca*. 96% 1_{eq} : 4% 1_{ax} emerges which is in agreement with other indirect deduction methods (see footnote^a). Beside preferential solvation, longer C–N bonds in the salts than in free amines also have been considered as a possible cause of free energy difference attenuation [5]; the striking solvent dependence of $-\Delta G^{\circ}$ shown in Table 3, however, leaves no doubt that solvation provides by far the main contribution.

The direct determination of ΔG° values for nitrogen inversion epimers of free saturated azaheterocyclic amines is associated with important technical difficulties and a low degree of accuracy because (*i*) due to the very high rate of nitrogen inversion at ambient temperature, direct measurement of *N*-epimer ratios generally is only possible at temperatures below -80° C in solvents with freezing points lower than -100° C, and (*ii*) ΔG° values of free amines are much larger than those of their salts, and large ΔG° values (for minor epimer contents less than *ca*. 5%) are notoriously hard to measure accurately. Therefore, several more convenient (but not more accurate!) procedures of indirect determination have been developed during the course of time (for a short survey, see Ref. [6]).

A new and very convenient indirect procedure could, perhaps, arise from the solvation effect discussed above. It appears fairly likely that a given solvent will produce, through the effect of preferential equatorial solvation, approximately equal attenuation of the ΔG° values for the salts epimers of any amine; thus, if the ΔG° value for the salt epimers in a given solvent and the magnitude of the attenuating effect of that solvent are known, the ΔG° value for the corresponding free amine epimers should be very easy to estimate. For example, on assuming that the ΔG° attenuating effect of CDCl₃ as estimated above to *ca*. $6.4 \text{ kJ} \cdot \text{mol}^{-1}$ applies also to amine $\mathbf{3}_{eq}-\mathbf{3}_{ax}$, and its salts $4_{eq}-4_{ax}$, a tentative estimation of the free energy difference for the amine epimers $\mathbf{3}_{eq}-\mathbf{3}_{ax}$ leads to: $-\Delta G^{\circ}_{\text{N-Et}}$ (3) = $(4.49\pm0.41) \text{ kJ} \cdot \text{mol}^{-1} + 6.4 \text{ kJ} \cdot \text{mol}^{-1} = ca$. $10.9\pm0.4 \text{ kJ} \cdot \text{mol}^{-1}$ (*i.e.*, 98.8% $\mathbf{3}_{eq}$: 1.2% $\mathbf{3}_{ax}$). Although this value could appear a little high if compared with *N*-ethyl-trans-decahydroquinoline for which $-\Delta G^{\circ}_{\text{N-Et}} = 8.78 \text{ kJ} \cdot \text{mol}^{-1}$ has been estimated [6] (for various cyclohexane derivatives, $-\Delta G^{\circ}_{\text{C-Et}}$ values ranging from 7.28 to $9.49 \text{ kJ} \cdot \text{mol}^{-1}$ have been reported [11–13]), this result is nevertheless

encouraging as $6.4 \text{ kJ} \cdot \text{mol}^{-1}$ probably is not yet the best value for the ΔG° attenuating effect of CDCl₃ and could be susceptible of some refinement. On the other hand, a somewhat higher ΔG° value for the *N*-ethyl group in **3** than in *N*-ethyl-*trans*-decahydroquinoline could be justified by the higher rigidity of the piperidine ring in **3** than in N-ethyl-*trans*-decahydroquinoline.

The total absence of *N*-epimers with axial N^+ -alkyl groups among the triflates of amines **5** and **7** is well justified by the double *syn*-diaxial steric interaction (at least 15.5 kJ · mol⁻¹ each [14]) that an axial N^+ -alkyl group would have to undergo with both of the C-6 and C-8 methylene groups and which obviously cannot be counterbalanced by the ΔG° attenuating solvation effect of CDCl₃.

Experimental

General

All NMR measurements were run at 296 K on a JEOL GX 400 NMR spectrometer (¹H: 399.65 MHz, ¹³C: 100.4 MHz) equipped with a LSI 11/73 computer and a JEOL JEC 32 dataprocessor using solutions ranging from 1.5–2.5 *M* in CDCl₃ with internal *TMS* in 5 mm sample tubes. The 2D INADEQUATE experiments were performed using a composite pulse sequence [15] and quadrature detection in f_1 and f_2 with the following instrumental settings: 1792 scans (64 h measurement time), $\tau = 3/4$ J = 21.4 ms (for J = 35 Hz), 32 data points in f_1 with zero filling to 64, 16384 data points in f_2 (digital resolution 0.8 Hz)

Syntheses

The syntheses of amines 1, 3, 5, and 7 have already been described elsewhere [16]. The solutions of the salts $2_{eq,ax}$, $4_{eq,ax}$, 6, and 8 were prepared from solutions of the parent amines, in CDCl₃ by adding slowly, under shaking by hand, small drops (pipette) of CF₃COOD until turbidity was produced by the first excess drop of acid (the salts are soluble in CDCl₃, whereas CF₃COOD is not miscible with it). Upon standing, the probe solution became soon clear as the excess acid raised to the solution surface.

Characteristic ¹H NMR signals of the N-diastereometric salts (δ_H , 400 MHz, CDCl₃)

 2_{eq} : 2.68 (td, J = 10.6, 10.6, 3.3, 3.3, and 3.3 Hz, H-4a/10a), 2.83 (s, N⁺-CH₃) ppm; 2_{ax} : 3.07 (td, J = 11.8, 11.8, 3.3, 3.3, and 3.3 Hz, H-4a/10a) ppm, 2.70 (s, N⁺-CH₃) ppm; 4_{eq} : 2.77 (td, J = 11, 11, 3.5, 3.5, and 3.5 Hz, H-4a/10a) ppm, 3.35 (q, J = 7, 7, and 7 Hz, N⁺-CH₂-) ppm; 4_{ax} : 3.08 (td, J = 11, 11, 11, 3.5, 3.5, and 3.5 Hz, H-4a/10a) ppm, 3.14(q, J = 7, 7, and 7 Hz, N⁺-CH₂-) ppm.

Acknowledgements

F. Potmischil thanks the *DAAD* (*Deutscher Akademischer Austauschdienst*) for a research grant (Grant 324-ro-95) in support of this work.

References

- [1] For part 18, see Potmischil F, Vierhapper, FW, Kalchhauser H (1998) Monatsh Chem 129: 515
- [2] Ma JCN, Warnhoff EW (1965) Can J Chem 43: 1849
- [3] Delpuech JJ, Deschamps MN (1970) Tetrahdedron 26: 2723

- [4] Kawazoe Y, Tsuda M (1967) Chem Pharm Bull 15: 1405
- [5] Eliel EL, Kandasamy D, Yen Ch-yu, Hargrave KD (1980) J Am Chem Soc 102: 3698
- [6] Eliel EL, Vierhapper FW (1975) J Am Chem Soc 97: 2424
- [7] Kalinowski HO, Berger S, Braun S (1984) ¹³C-NMR-Spektroskopie. Thieme, Stuttgart New York, p 149
- [8] Eliel EL, Vierhapper FW (1976) J Org Chem 41: 199
- [9] For the magnitudes of ¹³C NMR shifts induced by *N*-protonation of saturated acyclic, cyclic and heterocyclic amines see: Sarneski JE, Surprenant HL, Molen FK, Reilley ChN (1975) Analytical Chem **47**: 2116; Morishima I, Yoshikawa K, Okada K, Yonezawa T, Goto K (1973) J Am Chem Soc **95**: 165; Batchelor JG (1975) J Am Chem Soc **97**: 3410; Batchelor JG, Feeney J, Roberts GCK (1975) J Magn Resonance **20**: 19; Batchelor JG (1976) J Chem Soc Perkin Trans II, 1585; Batchelor JG (1977) J Magn Resonance **28**: 123; Beguin CG, Deschamps MN, Boubel V, Delpuech JJ (1978) Org Magn Resonance **11**: 418; Krishnamurthy VV, Iyer PS, Olah GA (1983) J Org Chem **48**: 3373, and Ref. [8].
- [10] Crowley PJ, Robinson MJT, Ward MG (1977) Tetrahedron 33: 915
- [11] Noyce DS, Dolby LJ (1961) J Org Chem 26: 3619
- [12] Lewin HA, Winstein S (1962) J Am Chem Soc 84: 2464
- [13] Booth H, Everett JR (1980) J Chem Soc Perkin Trans 2, 255
- [14] Allinger NL, Miller MA (1961) J Am Chem Soc 83: 2145 and references cited therein
- [15] Lambert J, Kuhn HJ, Buddrus J (1989) Angew Chem Int Ed Engl 28: 738
- [16] Bãrbulescu N, Potmischil F (1970) Liebigs Ann Chem 735: 132

Received October 12, 1998. Accepted (revised) November 16, 1998